| Maharaja Ranjit Singh College of Professional Sciences, Indore <br> Department of Mathematics <br> Lesson Plan - B. Sc. IYear(CS/HONS/PCM/IT/ELEX) (July 2020-21) <br> Subject-Mathematics <br> Paper I- Algebra and Trigonometry <br> Teacher - Manoj Joshi |  |  |
| :---: | :---: | :---: |
| Day/Lecture | Unit | Topic |
| 1 | 1 | Basics of matrices |
| 2 | 1 | Types of matrices, determinant and its properties |
| 3 | 1 | Rank of matrices |
| 4 | 1 | Question on rank of matrices |
| 5 | 1 | Question on rank of matrices |
| 6 | 1 | Echelon form of matrices and numericals |
| 7 | 1 | Echelon form of matrices and numericals |
| 8 | 1 | Normal form of matrices |
| 9 | 1 | Question on normal form of matrices |
| 10 | 1 | Characteristic equation of matrix |
| 11 | 1 | Eigen values and eigen vector of matrix |
| 12 | 1 | Questions based on eigen values and eigen vectors |
| 13 | 1 | Linearly dependent and independent vectors |
| 14 | 1 | Row rank and column rank |
| 15 | 1 | Practise questions and doubts |
| 16 | 1 | Proof of theorems based on eigen values and eigen vector |
| 17 | 2 | Cayley- Hamilton theorem statement and verification |
| 18 | 2 | Proof of Cayley-Hamilton theorem and numerical problems |
| 19 | 2 | Solution of linear equation by matrix method |
| 20 | 2 | Consistency and inconsistency of linear equation |
| 21 | 2 | Numerical Problems |
| 22 | 2 | Numerical Problems |
| 23 | 2 | Homogoneous linear equations |
| 24 | 2 | Non homogeneous equations |
| 25 | 2 | Theorems on consistency and inconsistency |
| 26 | 2 | Theorems on consistency and inconsistency |
| 27 | 2 | Cremer's method of solving linear equation |
| 28 | 2 | Practise questions and doubts |
| 29 | 2 | Practise questions and doubts |
| 30 | 2 | Revision |
| 31 | 3 | Introduction to theory of equation |


| 32 | 3 | Symmetric function of the roots |
| :---: | :---: | :---: |
| 33 | 3 | Synthetic division, roots of multiplicity |
| 34 | 3 | GCD of polynomials |
| 35 | 3 | Relation between roots |
| 36 | 3 | Numericals on relation between the roots |
| 37 | 3 | Numericals on relation between the roots |
| 38 | 3 | Transformation of equations,roots with sign change |
| 39 | 3 | Reciprocal equation,roots diminished by h |
| 40 | 3 | Descartes rule ,removal of the terms |
| 41 | 3 | Practise questions and doubts |
| 42 | 3 | Practise questions and doubts |
| 43 | 4 | Logic-logical connectives |
| 44 | 4 | Truth tables, problem on logical connectivity |
| 45 | 4 | Tautology,contradiction,logical equivalence |
| 46 | 4 | Algebra proposition |
| 47 | 4 | Boolean algebra definition |
| 48 | 4 | Examples on Boolean algebra |
| 49 | 4 | Properties of Boolean algebra |
| 50 | 4 | Properties of Boolean algebra |
| 51 | 4 | Properties of Boolean algebra, Boolean functions |
| 52 | 4 | Minimal Boolean function |
| 53 | 4 | Disjunctive normal form |
| 54 | 4 | Conjuctive normal form |
| 55 | 4 | Problems on normal forms |
| 56 | 5 | Algebra of electric circuit |
| 57 | 5 | Parallel and series connection and their problems |
| 58 | 5 | Logic gates and their problems |
| 59 | 5 | Logic gates and their problems |
| 60 | 5 | Practise questions and doubts |
| 61 | 5 | De-Moivre's theorem and it's proof |
| 62 | 5 | Problems on De-Moivre's theorem |
| 63 | 5 | Problems on De-Moivre's theorem |
| 64 | 5 | Expansion of Sine, Cosine and Tan Series |


| 65 | 5 | Direct and Inverse circular functions |
| :--- | :--- | :--- |
| 66 | 5 | Hyperbolic functions |
| 67 | 5 | Problems on above funtions |
| 68 | 5 | Problems on above funtions |
| 69 | 5 | Expansion of trigonometric functions |
| 70 | 5 | Expansion of trigonometric functions |
| 71 | 5 | Logerithm of complex quantities |
| 72 | 5 | Gregory Series |
| 73 | 5 | Gregory Series |
|  |  |  |
|  |  |  |


| Maharaja Ranjit Singh College of Professional Sciences, Indore |  |  |
| :---: | :---: | :--- | :--- |
| Lesson Plan - B. Sc. IYear(CS/HONS/PCM/IT/ELEX) (July 2020 -21) |  |  |
| Subject -Mathematics |  |  |
| Daper\| |  |  |$\quad$| Paper-II Calculus and Differential Equation |
| :--- |


| 40 | 3 | Intrinsic equation from cartesian and polar equations |
| :--- | :--- | :--- |
| 41 | 4 | Introduction of Linear differential equations and their solution |
| 42 | 4 | Linear differential equations and equation reducible to linear |
| 43 | 4 | Change of variables,exact differential equations and their solutions |
| 44 | 4 | Integrating factor,rules for finding integrating factors |
| 45 | 4 | Rules for finding integrating factors |
| 46 | 4 | Equations solvable for p |
| 47 | 4 | Equations solvable for x and y |
| 48 | 4 | Clairaut's form,Singular solutions |
| 49 | 4 | Geomerical meaning of differential equation,orthogonal trajectries |
| 50 | 4 | Differential equation of orthogonal trajectories,self orthogonal family |
| 51 | 5 | Linear differential equations with constant coefficients |
| 52 | 5 | Auxiliary equation with equal and different roots |
| 53 | 5 | Auxiliary equations with imaginery roots |
| 54 | 5 | General method to find particular integral |
| 55 | 5 | Short methods to find particular integral |
| 56 | 5 | Short methods to find particular integral |
| 57 | 5 | Differential equations reducible to linear equations |
| 58 | 5 | Linear differential equations of second order |
| 59 | 5 | Method of Variation of parameters |
| 60 | 5 | Method of Variation of parameters |


| Maharaja Ranjit Singh College of Professional Sciences, Indore <br> Department of Mathematics <br> Lesson Plan - B. Sc. IYear(CS/HONS/PCM/IT/ELEX) (July 2020-21) <br> Subject -Mathematics <br> Paper III- Vector Analysis and Geometry <br> Teacher - Divya Agrawal,Manoj Joshi |  |  |
| :---: | :---: | :---: |
| Day/Lecture | Unit | Topic |
| 1 | 1 | Introduction of vector triple product,geometrical significance |
| 2 | 1 | Condition of coplanar and non-coplanar vectors |
| 3 | 1 | Vector product of four vectors |
| 4 | 1 | Reciprocal system of vectors and its properties |
| 5 | 1 | Limit,continuity and differentiability of vector functions |
| 6 | 1 | Derivative of scalar product of vectors |
| 7 | 1 | Derivative of cross product and triple product of vectors |
| 8 | 1 | Scalar and vector point function, directional derivatives |
| 9 | 1 | Gradient of scalar point functions |
| 10 | 1 | Theorems,gradient of constant,sum and difference of two functions |
| 11 | 1 | Gradient of product and quotient of two functions |
| 12 | 1 | Unit tangent vector,tangent line and divergence of a vector |
| 13 | 1 | Curl of vector,constant vector and sum of two functions |
| 14 | 2 | Vector integration, definite integral |
| 15 | 2 | Line integral,circulation |
| 16 | 2 | Irrotational vector |
| 17 | 2 | Surface integral |
| 18 | 2 | Volume integral |
| 19 | 2 | Gauss's divergent theorem |
| 20 | 2 | Deductions and applications of Gauss divergence theorem |
| 21 | 2 | Green's theorem |
| 22 | 2 | Stoke's theorem and it's cartesian equivalent |
| 23 | 2 | Application of Stoke's theorem |
| 24 | 2 | Applications of Gauss and Stoke's theorem |
| 25 | 3 | General equation of second degree,conic section and it's nature |
| 26 | 3 | Centre ,axes, eccentricity and foci of conic |
| 27 | 3 | Tracing of parabola and hyperbola |
| 28 | 3 | Tracing of ellipse |
| 29 | 3 | System of conics |
| 30 | 3 | System of conics |
| 31 | 3 | Angle between two curves,orthogonal circles |
| 32 | 3 | Conics passing through 4\&5 points |
| 33 | 3 | Radical axis and properties of redical axis |
| 34 | 3 | Confocal conics |
| 35 | 3 | Polar equation of conics |
| 36 | 3 | Polar equation of conics |
| 37 | 4 | Cone and it's equation |
| 38 | 4 | Condition of general equation of 2nd degree to represent cone |
| 39 | 4 | Equation of cone with vertex at origin |


| 40 | 4 | Generators of the cone |
| :--- | :--- | :--- |
| 41 | 4 | Reciprocal cone and enveloping cone |
| 42 | 4 | Right circular cone |
| 43 | 4 | Equation with cylinder |
| 44 | 4 | Different numerical examples of cylinder |
| 45 | 4 | Right circular cylinder |
| 46 | 4 | Tangent plane to the cylinder |
| 47 | 4 | Enveloping cone of cylinder |
| 48 | 5 | Central conicoid |
| 49 | 5 | General and standard equation of central conicoid |
| 50 | 5 | Types of conicoids |
| 51 | 5 | Tangent line,tangent plane |
| 52 | 5 | Director sphere,normal lines |
| 53 | 5 | Polar planes,polar lines |
| 54 | 5 | Enveloping cone,enveloping cylinder,locus of chords |
| 55 | 5 | Paraboloid |
| 56 | 5 | Paraboloid |
| 57 | 5 | Plane section of conicoid |
| 58 | 5 | Plane section of conicoid |
| 59 | 5 | Generating lines |
| 60 | 5 | Generating lines |


| Maharaja Ranjit Singh College of Professional Sciences, Indore <br> Department of Mathematics <br> Lesson Plan - B. Sc. IYear(CS/HONS/PCM/IT/ELEX) (July 2020-21) <br> Subject -Mathematics <br> Paper-I Abstract Algebra <br> Teacher - Manoj Joshi |  |  |
| :---: | :---: | :---: |
| Day/Lecture | Unit | Topic |
| 1 | 1 | Basics of set |
| 2 | 1 | Binary operations, definition of group |
| 3 | 1 | Examples of group |
| 4 | 1 | Examples of group,groupoid,semigroup and monoid |
| 5 | 1 | Properties of group |
| 6 | 1 | Modulo groups,residue class |
| 7 | 1 | Subgroup,criterion for subgroup |
| 8 | 1 | Algebra of subgroups |
| 9 | 1 | Subgroup generated by subsets |
| 10 | 1 | Order of element and it's theorem |
| 11 | 1 | Theorems related with order of group |
| 12 | 1 | Cyclic group and it's examples |
| 13 | 1 | Properties of cyclic group |
| 14 | 2 | Coset and it's definition and examples |
| 15 | 2 | Theorems on cosets |
| 16 | 2 | Theorems on cosets |
| 17 | 2 | Coset decomposition and Lagrange's theorem |
| 18 | 2 | Normal subgroups,definition and examples |
| 19 | 2 | Theorems on normal subgroups |
| 20 | 2 | Theorems on normal subgroups |
| 21 | 2 | Algebra of normal subgroups |
| 22 | 2 | Self conjugate elements and centre of group |
| 23 | 2 | Quotient group |
| 24 | 2 | Theorems on quotient groups |
| 25 | 3 | Homomorphism and Isomorphism |
| 26 | 3 | Properties of Hpmomorphism |
| 27 | 3 | Theorems of Homomorphism and Isomorphism |
| 28 | 3 | Kernal of Homomorphism |
| 29 | 3 | Theorems on kernal of Homomorphism |
| 30 | 3 | Fundamental theorem |
| 31 | 3 | Permutation group |
| 32 | 3 | Types and properties of permutation |
| 33 | 3 | Theorems on permutation |
| 34 | 3 | Cyclic permutation,transposition, even-odd permutation |
| 35 | 3 | Theorems on even permutation |


| 36 | 3 | Cayley's theorem |
| :--- | :--- | :--- |
| 37 | 4 | Group Automorphism |
| 38 | 4 | Inner Automorphism and it's theorem |
| 39 | 4 | Therems on Automorphism |
| 40 | 4 | Conjugate element and conjugacy relation |
| 41 | 4 | Conjugate class and self conjugate relations |
| 42 | 4 | Self conjugate elements and centre of group |
| 43 | 4 | Normalizer of an element and theorems |
| 44 | 4 | Class equation of finite group |
| 45 | 4 | Centre for group of prime - power order |
| 46 | 4 | Cauchy's theorem for finite abelian group |
| 47 | 4 | Cauchy's theorem for finite non-abelian group |
| 48 | 5 | Ring it's definition |
| 49 | 5 | Examples of rings |
| 50 | 5 | Types of rings |
| 51 | 5 | Properties of rings |
| 52 | 5 | Ring Homomorphism and Isomorphism |
| 53 | 5 | Theorems on ring homomorphism and isomorphism |
| 54 | 5 | Ideals and principle Ideals |
| 55 | 5 | Kernal of ring Homomorphism,Euclidean ring |
| 56 | 5 | Subring and characteristics of rings |
| 57 | 5 | Polynomial ring and it's properties |
| 58 | 5 | Integral domain and field |
| 59 | 5 | Theorems on integral domain and field |
| 60 | 5 | Theorems on integral domain and field |
|  |  |  |


| Maharaja Ranjit Singh College of Professional Sciences, Indore <br> Department of Mathematics <br> Lesson Plan - B. Sc. II Year(CS/HONS/PCM/IT/ELEX)(July 2020-21) <br> Subject - Mathematics <br> Paper-II Advanced Calculus <br> Teacher - Divya Agrawal, Shifa Goyal |  |  |
| :---: | :---: | :---: |
| Day/Lecture | Unit | Topic |
| 1 | 1 | Definition and limit of sequence |
| 2 | 1 | Examples of convergent sequence |
| 3 | 1 | Types of sequence and it's examples |
| 4 | 1 | Theorems on convergent sequence |
| 5 | 1 | Cauchy's sequence and it's theorems |
| 6 | 1 | Convergence of series |
| 7 | 1 | Test of convergence of series |
| 8 | 1 | Test of convergence of series |
| 9 | 1 | Test of convergence of series |
| 10 | 1 | Alternate series and it's convergence |
| 11 | 1 | Absolute and conditional convergence |
| 12 | 1 | Theorems and related questions |
| 13 | 2 | Continuity of function of one variable and examples |
| 14 | 2 | Continuity in intervals |
| 15 | 2 | Kinds of discontinuity with examples |
| 16 | 2 | Uniform continuity it's theorem and examples |
| 17 | 2 | Differentiability and examples |
| 18 | 2 | Differentiability on an interval and examples |
| 19 | 2 | Chain rule, derivative of inverse function |
| 20 | 2 | Darboux theorem,Roll's theorem |
| 21 | 2 | Problems on Darboux and Roll's theorem |
| 22 | 2 | Langrange's Mean value \& Cauchy's mean value theorem |
| 23 | 2 | Taylor theorem and its various forms |
| 24 | 2 | Problems on Taylor's theorem |
| 25 | 3 | Function of two variables with examples |
| 26 | 3 | Limit of function of two variables |
| 27 | 3 | Continuity of function of two variables |
| 28 | 3 | Examples and questions |
| 29 | 3 | Partial differentiation |
| 30 | 3 | Euler's theorem |
| 31 | 3 | Problems based on Euler's theorem |
| 32 | 3 | Change of variable |
| 33 | 3 | Change of variable |
| 34 | 3 | Taylor's theorem of two variables |
| 35 | 3 | Jacobian |


| 36 | 3 | Jacobian |
| :--- | :--- | :--- |
| 37 | 4 | Family of curves, Envelopes |
| 38 | 4 | Problems to find envelope |
| 39 | 4 | Evolute and problems based on it |
| 40 | 4 | Maxima and Minima |
| 41 | 4 | Problems to find Maxima and Minima |
| 42 | 4 | Lagrange's undetermined multiplier method |
| 43 | 4 | Beta function and its properties |
| 44 | 4 | Gammma function and its properties |
| 45 | 4 | Problems based on Beta and Gamma function |
| 46 | 4 | Legendre's duplication formula |
| 47 | 5 | Multiple Integral and examples |
| 48 | 5 | Examples of multiple integral of polar coordinates |
| 49 | 5 | Dirichlet's integral and its problems |
| 50 | 5 | Volume of solid of revolution and examples |
| 51 | 5 | Surface revolution and examples |
| 52 | 5 | Change of order of integration |
| 53 | 5 | Change of order of integration |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |


| Maharaja Ranjit Singh College of Professional Sciences, Indore <br> Department of Mathematics <br> Lesson Plan - B. Sc. II Year(CS/HONS/PCM/IT/ELEX)(July 2020-21) <br> Subject - Mathematics <br> Paper - III Differential Equation <br> Teacher - Shifa Goyal |  |  |
| :---: | :---: | :---: |
|  |  |  |
| Day/Lecture | Unit | Topic |
| 1 | 1 | Power Series solution with numericals |
| 2 | 1 | Series solution by Forbenious method,Numericals |
| 3 | 1 | Series solution by Forbenious method,Numericals |
| 4 | 1 | Bessel function and its properties |
| 5 | 1 | Reccurence relations |
| 6 | 1 | Orthogonality of Bessel's function |
| 7 | 1 | Legendre function |
| 8 | 1 | Generating function of Legendre function |
| 9 | 1 | Roderige's formula,Christofel summmation formula |
| 10 | 1 | Reccurence relations |
| 11 | 2 | Definition of Laplace transformation and some standard functions |
| 12 | 2 | Properties and theorems of Laplace transformation |
| 13 | 2 | Laplace transformation of product of 't' and its powers |
| 14 | 2 | Initial and final value theorem and problems |
| 15 | 2 | Laplace transformation of derivatives |
| 16 | 2 | Laplace transformation of derivatives and realted problems |
| 17 | 2 | Laplace transformation of Integrals |
| 18 | 2 | Laplace trnsformation of periodic functions |
| 19 | 3 | Inverse Laplace transformation |
| 20 | 3 | Inverse Laplace transformation of standard functions |
| 21 | 3 | Properties of Inverse Laplace transformation |
| 22 | 3 | Problems based on inverse Laplace transformation |
| 23 | 3 | Inverse Laplace of Multiplication and division of 'p' |
| 24 | 3 | Convolution theorem and its problems |
| 25 | 3 | Heavside expansion formula and problems |
| 26 | 3 | Application of Laplace transformation |
| 27 | 3 | Application of Laplace transformation |
| 28 | 4 | Partial differential equations of first order |
| 29 | 4 | Problems based on PDE |
| 30 | 4 | Lagranges metod to solve PDE |
| 31 | 4 | Problems of PDE of first order |
| 32 | 4 | Standard form of PDE of order one degree high |
| 33 | 4 | Standard form of PDE of order one degree high |
| 34 | 4 | Charpit's general method of solution |
| 35 | 4 | Charpit's general method of solution |
| 36 | 5 | Partial differential equations of higher order |
| 37 | 5 | Examples on Partial differential equations of higher order |
| 38 | 5 | Canninical form |
| 39 | 5 | Classification of linear PDE of second order |


| 40 | 5 | Homogeneous linear partial differential equation |
| :--- | :--- | :--- |
| 41 | 5 | Nonhomogeneous linear PDE |
| 42 | 5 | Short methods for finding particular integral |
| 43 | 5 | Short methods for finding particular integral |
| 44 | 5 | Equations reducible to PDE with constant coefficient |
| 45 | 5 | Equations reducible to PDE with constant coefficient |
| 46 | 5 | Geometric problems |
| 47 |  |  |
| 48 |  |  |
| 49 |  |  |
| 50 |  |  |
| 51 |  |  |
| 52 |  |  |
| 53 |  |  |
| 54 |  |  |
| 55 |  |  |
| 56 |  |  |
| 57 |  |  |
| 58 |  |  |
| 59 |  |  |
| 60 |  |  |


| Maharaja Ranjit Singh College of Professional Sciences, Indore |  |  |
| :---: | :---: | :---: |
|  |  | Department of Mathematics |
| Lesson | B | II Year(CS/HONS/PCM/IT/ELEX)(July 2020-21) |
| Subject -M | mati | Paper I- Linear Algebra and Numerical Analysis |
| Teacher - Manoj Joshi, Shifa Goyal |  |  |
| Day/Lecture | Unit | Topic |
| 1 | 1 | Basics of group and field |
| 2 | 1 | Definition of Vector space |
| 3 | 1 | Examples of vector space |
| 4 | 1 | Properties of vector space |
| 5 | 1 | Vector subspaces,theorems |
| 6 | 1 | Theorems on vector subspaces |
| 7 | 1 | Linear combination of vectors, LI and LD vectors |
| 8 | 1 | Theorems |
| 9 | 1 | Finite dimensional vector space |
| 10 | 1 | Existense and extention theorem |
| 11 | 1 | Linear and direct sum and related theorems |
| 12 | 1 | Examples on LI ,LD and basis |
| 13 | 1 | Properties of finite dimensional vector space |
| 14 | 1 | Quotient space |
| 15 | 2 | Linear transformation definition and examples |
| 16 | 2 | Properties of linear transformation |
| 17 | 2 | Isomorphism and some Theorems |
| 18 | 2 | Theorems on homomorphism and isomorphism |
| 19 | 2 | Matrix repesentation of linear transformation |
| 20 | 2 | Examples and theorems |
| 21 | 2 | Rank and nullity of linear transformation,theorems |
| 22 | 2 | Theorems, singular and non singular LT |
| 23 | 2 | Dual space,dual basis |
| 24 | 2 | Annhiliator, adjaoint of LT |
| 25 | 2 | Eigen values and eigen vector of LT |
| 26 | 2 | Examples and theorems |
| 27 | 2 | Diagonalization of matrix,Qudratic forms |
| 28 | 2 | Bilinear and quadratic forms |
| 29 | 3 | Inner product of vector spaces |
| 30 | 3 | Examples |
| 31 | 3 | Properties of Inner product |
| 32 | 3 | Norm of a vector, unit vector |
| 33 | 3 | Orthogonal vector and orthonormal set |
| 34 | 3 | Theorems |
| 35 | 3 | S-C-S inequality,Bessel's inequality |


| 36 | 3 | Orthogonalization of a base |
| :--- | :--- | :--- |
| 37 | 3 | Theorems |
| 38 | 4 | Solution of Equations |
| 39 | 4 | Solution of Equations |
| 40 | 4 | Solution of Equations |
| 41 | 4 | Interpolation Definition and examples |
| 42 | 4 | Lagranges Interpolation, Divided Differences |
| 43 | 4 | Interpolation usings Divided Differences |
| 44 | 4 | Numerical Quadrature |
| 45 | 4 | Numerical Quadrature |
| 46 | 4 | Newton Cotes formulae |
| 47 | 4 | Gauss Quadrature |
| 48 | 4 | Gauss Quadrature |
| 49 | 5 | Direct method for solving System of linear equations |
| 50 | 5 | Direct method for solving System of linear equations |
| 51 | 5 | LU decomposition, Cholesky method |
| 52 | 5 | Iterative method |
| 53 | 5 | Iterative method |
| 54 | 5 | Ordinary Differtial equations: Euler method |
| 55 | 5 | Euler Modified method, Single step method |
| 56 | 5 | Runge Kutta's method, Multi step method |
| 57 | 5 | Milne Simpson method |
| 58 | 5 | Method based on Numerical integration |
| 59 | 5 | Method based on Numerical differentiation |
| 60 | 5 | Examples |


| Maharaja Ranjit Singh College of Professional Sciences, Indore <br> Department of Mathematics <br> Lesson Plan - B. Sc. II Year(CS/HONS/PCM/IT/ELEX)(July 2020-21) <br> Subject - Mathematics <br> Paper-II Real and complex Analysis <br> Teacher - Divya Agrawal, Shifa Goyal |  |  |
| :---: | :---: | :---: |
| Day/Lecture | Unit | Topic |
| 1 | 1 | Basics of Riemann integral |
| 2 | 1 | Upper and Lower sum and related Lemmas |
| 3 | 1 | Riemann integral |
| 4 | 1 | Theorems on Riemann integral |
| 5 | 1 | Theorems on Riemann integral |
| 6 | 1 | Theorems on Riemann integral |
| 7 | 1 | Fundamental and mean value theorem |
| 8 | 1 | Second mean value theorem and problems |
| 9 | 1 | Partial derivatives and examples |
| 10 | 1 | Differentiability of function of two variables |
| 11 | 1 | Theorems on differentiability |
| 12 | 1 | Schwarz's and Young's theorem |
| 13 | 1 | Examples |
| 14 | 2 | Convergence of improper integration of first kind |
| 15 | 2 | Tests for convergence of improper integration |
| 16 | 2 | Tests for convergence of improper integration |
| 17 | 2 | Convergence of improper Integration of second kind |
| 18 | 2 | Tests for convergence of improper integration of second kind |
| 19 | 2 | Tests for convergence of improper integration of second kind |
| 20 | 2 | Absolute convergence |
| 21 | 2 | Integral as a function of a parameter |
| 22 | 2 | Integral as a function of a parameter |
| 23 | 2 | Fourier series |
| 24 | 2 | Fourier series |
| 25 | 3 | Metric Space definitation and examples |
| 26 | 3 | Open sphere,closed sphere, neighbourhood and limit point |
| 27 | 3 | Open set,closed set and theorems |
| 28 | 3 | Boundary points,metric subspace |
| 29 | 3 | Cauchy sequence and its theorems |
| 30 | 3 | Complete metric space and theorems |
| 31 | 3 | Fixed point and Banach contraction principle |
| 32 | 3 | Real numbers,extend axiom,field,order axiom |
| 33 | 3 | Bounded and unbounded sets |
| 34 | 3 | Completeness ,Archemedian Property,Density theorem |
| 35 | 3 | Theorems on dense and nowhere dense sets,Baire category theorem |
| 36 | 3 | Seprable space, First countable and second countable space |
| 37 | 4 | Continuous function, Uniform Continuity |
| 38 | 4 | Compact spaces |
| 39 | 4 | Sequential compactness |
| 40 | 4 | Finite intersection Property and compactness |
| 41 | 4 | Continuous functions and compact set |


| 42 | 4 | Separated sets, disconnected and connected set |
| :--- | :--- | :--- |
| 43 | 4 | Totally Disconnected set and components |
| 44 | 4 | Connected sub sets and continuous functions |
| 45 | 5 | Introduction of complex numbers |
| 46 | 5 | Properties of moduli and argument |
| 47 | 5 | Equation of straight lines and circle and inverse point |
| 48 | 5 | Limit and Continuity of complex numbers |
| 49 | 5 | Uniform continuity and differtiability of complex functions |
| 50 | 5 | Analytic function and C-R equation |
| 51 | 5 | Polar form of C-R equation and Hormonic functions |
| 52 | 5 | Methods of constrction of analytic function |
| 53 | 5 | Mobius Transformation |
| 54 | 5 | Resultant of two mobius tranformation and problems |
| 55 | 5 | Problems on fixed point of mobius transformation |
| 56 | 5 | Cross ratio and related problems |
| 57 | 5 | Critical mapping |
| 58 | 5 | Elliptic, hyperbolic and parabolic transformation |
| 59 | 5 | Nesessary and sufficient condition of Conformal mapping |
| 60 | 5 | Transcendental, exponential and logrithimic transformation |


| Maharaja Ranjit Singh College of Professional Sciences, Indore <br> Department of Mathematics <br> Lesson Plan - B. Sc. II Year(CS/HONS/PCM/IT/ELEX)(July 2020-21) <br> Subject -Mathematics <br> PaperIII- Discrete Mathematics <br> Teacher - Manoj Joshi, Divya Agrawal |  |  |
| :---: | :---: | :---: |
| Day/Lecture | Unit | Topic |
| 1 | 1 | Basics of Boolean Algebra |
| 2 | 1 | Properties of Boolean Algebra,Minimal Boolean function |
| 3 | 1 | Disjunctive normal form and examples |
| 4 | 1 | Examples and theorems |
| 5 | 1 | Conjunctive normal form |
| 6 | 1 | Examples |
| 7 | 1 | Binary and invrse relations |
| 8 | 1 | Composite and equivalence relations |
| 9 | 1 | equivalence classs and related theorems |
| 10 | 1 | Examples and questions |
| 11 | 2 | Partial order relations and questions |
| 12 | 2 | Partial order set and total order set |
| 13 | 2 | Hasse diagram,maximal and minimal element |
| 14 | 2 | Lub,glb, definition of Lattice |
| 15 | 2 | Example of lattices |
| 16 | 2 | Dual lattices, distributive lattice,complemented lattice |
| 17 | 3 | Definition of graph and examples |
| 18 | 3 | Types of graphs,subgraphs |
| 19 | 3 | Walk,path, circuit,connected and disconnected graph |
| 20 | 3 | Theorems |
| 21 | 3 | Euler graph,Hamiltonian path and Circuit |
| 22 | 3 | Shortest path in weighted graph, Dijkstra algorithm |
| 23 | 3 | Examples |
| 24 | 4 | Definition of Tree,rooted tree and binary tree |
| 25 | 4 | Theorems on tree |
| 26 | 4 | Theorems on tree,spanning tree |
| 27 | 4 | Kruskal's Algorithm |
| 28 | 4 | Prim's Algorithm |
| 29 | 5 | Matrix representation of graph,incidence matrix |
| 30 | 5 | Adjacency matrix |
| 31 | 5 | Cut set and examples |
| 32 | 5 | Theorems on cutset |
| 33 | 5 | Planar graph,Kuratowski's two graphs |
| 34 | 5 | Planar graph,Kuratowski's two graphs |
| 35 | 5 | Planar graph,Kuratowski's two graphs |


| 36 | 5 | Planar graph,Kuratowski's two graphs |
| :--- | :--- | :--- |
| 37 | 5 | Doubt Solving |
| 38 | 5 | Doubt Solving |
| 39 | 5 | Doubt Solving |
| 40 | 5 | Revision |
| 41 | 5 | Revision |
| 42 |  |  |
| 43 |  |  |
| 44 |  |  |
| 45 |  |  |
| 46 |  |  |
| 47 |  |  |
| 48 |  |  |
| 49 |  |  |
| 50 |  |  |
| 51 |  |  |
| 52 |  |  |
| 53 |  |  |
| 54 |  |  |
| 55 |  |  |
| 56 |  |  |
| 57 |  |  |
| 58 |  |  |
| 59 |  |  |
| 60 |  |  |

